Back to Blog

vLLM 0.8 Benchmark Explosion: Dual-Machine 16x H100 Pushes DeepSeek-R1 671B to New Heights!

Tech Trifecta Unleashed: FlashMLA + DeepEP + FP8 Nuclear Power!

🚀 vLLM 0.8 Benchmark Explosion: Dual-Machine 16x H100 Pushes DeepSeek-R1 671B to New Heights! 💥

Tech Trifecta Unleashed: FlashMLA + DeepEP + FP8 Nuclear Power!

After months of silence, the vLLM team has finally dropped the highly anticipated vLLM 0.8 update, supercharging the DeepSeek-R1 671B model with a nuclear-powered engine! The three killer features are now fully integrated:

1️⃣ FlashMLA: A 200% boost in Attention computation efficiency!

2️⃣ DeepEP Expert Parallelism: Halves the communication overhead for MoE models in multi-machine setups!

3️⃣ DeepSeek Custom FP8 GEMM: Maximizes memory bandwidth utilization, pushing hardware limits!


🔥 Benchmark Environment: Supercomputing for the Masses

  • Hardware: 2x8 H100 80GB (NVLink fully enabled, beast mode activated)
  • Model: DeepSeek-R1 671B FP8 (officially optimized by the creators)
  • Image: vllm/vllm-openai:v0.8.1 (Pro tip: Use Alibaba Cloud mirror for faster downloads)
docker pull registry.cn-hangzhou.aliyuncs.com/dongfangzan/vllm-openai:v0.8.1

💻 Launch Script: The Dark Art of Activation

Master and worker node incantations (watch out for the environment variable voodoo):

# Master Node (head parameter activated) VLLM_HOST_IP=xxx bash run_cluster.sh vllm/vllm-openai head_ip --head... # Worker Node (slave mode activated) VLLM_HOST_IP=yyy bash run_cluster.sh vllm/vllm-openai head_ip --worker...

⚠️ Legacy Bug Alert: After entering the container, fire off these two pip commands!

pip install pyarrow pandas # vLLM's classic move: missing dependencies

🚦 Parameter Tuning: Forbidden Magic

The secret sauce for unlocking full performance:

VLLM_ATTENTION_BACKEND=FLASHMLA VLLM_TEST_ENABLE_EP=1 VLLM_USE_V1=1 \\ vllm serve ... --tensor-parallel-size 8 --pipeline-parallel-size 2 \\ --block-size 64 --max_num_batched_tokens 32768 # Quantum speed reading mode

Critical Pitfalls to Avoid:

  • The -enable-expert-parallel parameter is deprecated; force it with environment variables!
  • V1 engine must be manually enabled, or PP (Pipeline Parallelism) will fail!
  • MTP functionality is temporarily broken in multi-machine scenarios—await official fixes!

📊 Benchmark Data Explosion: Truth Lies in Throughput!

Scenario 1: 1024 Concurrent Short Texts

1024 concurrent requests, input=1024/output=5129033 tokens/s (vLLM's throughput dominance!)

Scenario 2: 512 Concurrent Long Texts

4096 input + 512 output → 10387 tokens/s (FP8 memory optimization goes nuclear!)

Scenario 3: 30k-Word Ultra-Long Texts

30k input + 500 output → 9601 tokens/s (FlashMLA reigns supreme for long sequences!)

🤖 Single Request Test: vLLM Without MTP vs. SGLang on Steroids

{"prompt": "Write a Python script for Google Search"} → Generation speed ≈ 90 tokens/s (SGLang + MTP combo dominates!)

Performance Ladder Status:

High Concurrency Scenarios: vLLM 0.8 dominates (throughput supremacy!)

Low Latency Scenarios: SGLang remains king (MTP ensures single-request speed!)


🔮 Future Wars: Inference Costs About to Hit Rock Bottom

  • FlashMLA + DeepEP combo boosts multi-machine communication efficiency by 300%!
  • Once MTP supports multi-machine setups, inference speed will skyrocket!
  • FP8 memory black tech ensures the 671B model fully utilizes H100 memory bandwidth!

👾 Developer Advice: Jumping into vLLM 0.8 + DeepSeek-R1 now is like securing a ticket to the AGI era! Drop your benchmark data in the comments and let’s battle it out! 👇